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Noise suppression in large wavenumber Fourier imaging 

Lan Wang k Norman Bleistein 
Center for Wave Phenomena, Colorado School of Mines 

ABSTRACT 

For the band-limited inverse problem, the inversion formulas developed by 
Bleistein et al. generate a reflector map as well as an estimate of reflection 
coefficients from the discontinuities of the medium parameters. Here, we de- 
scribe the use of a multiscale smoothing operator to suppress the noise while 
preserving the features of the original processing formula. This is accomplished 
by applying a simple multiplier in wavenumber domain to the output of the 
inversion formalism. A comparison of this approach to wavelet based edge de- 
tection processing shows that this continuous multiscale operator allows more 
flexibility for changing the length of the smoothing operator. 

Key words: multiscale smoothing operator, noise suppression, Fourier inver- 
sion, imaging, wavelet transform 

Introduction 

Rapid changes in the medium parameters characterize 
the structure of the subsurface; they are the reflectors in 
the earth. In situations where the medium parameter is 
related to a velocity field, or the perturbation in the ve- 
locity field, it is typical to think in terms of piecewise 
smooth functions whose discontinuity surfaces represent 
reflectors. The object velocity fields discussed in this re- 
port all belong to this class of step-like piecewise smooth 
functions. 

The inversion formulas developed by Bleistein et 
oZ.(1996) provide a tool for obtaining correct locations 
of interfaces as well as model-consistent specular reflec- 
tion coefficients. However, because of the band-limited 
nature of seismic data, the step-like wavespeed perturb- 
ation functions are not well reconstructed using this for- 
mulation. By modifying the inversion operator (Bleistein 
et al., 1996), the output can be transformed into the sin- 
gular functions of the discontinuity surfaces of the ori- 
ginal function, scaled by the jump in the original function 
at each point of the discontinuity surface. This modifica- 
tion is a normal derivative operator in the spatial domain, 
achieved through an appropriate multiplier in the Fourier 
domain derived from asymptotic analysis. 

The derivative operation is sensitive to the noise 
present in the wavefield. In this report, a multiscale 

smoothing procedure is introduced to stabilize the inver- 
sion algorithm and improve the images. The multiscale 
operator is based on the Fourier transform. The al- 
gorithm extracts the rapid changes in the velocity field 
as a function of location and scale, while noise is largely 
suppressed. 

More specifically, we introduce a scale, s, in the con- 
volution operator. It is known (Mallat & Hwang, 1992), 
that the effect of the scaling operator on noise, iV(x), is 
to produce an output Ns (x) having the property that 

|AT3(x)| = 0(s"),     u<0. (1) 

That is, Ns(x.) decays with increasing s. On the other 
hand, for a piecewise smooth signal, /(x), we know that 
the scaled outputs satisfy 

|J.(x)| = O(s0). (2) 

Thus, its peak amplitude does not decay with increas- 
ing s. However, when J(x) is a delta function, Is(x) is 
a bandlimited delta function whose resolution decreases 
with increasing s. Thus, it is a "race" between noise sup- 
pression and resolution. Our tests with parameters typ- 
ical of seismic data suggest that we win the race in this 
application. 

The Bleistein-Cohen (BC) inversion formulas have 
the structure of Fourier transform-like integrals. One fun- 
damental concept of the BC inversion approach is ap- 
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plying the underlying relationship between the observa- 
tions and the Fourier transform of the function (s) that 
characterize(s) the unknown medium. Thus, in the fol- 
lowing sections, attention will be primarily focused on 
a multiscale smoothing operator applied to Fourier ima- 
ging as a test of its ability to suppress noise. Thereafter, 
we address the applications of this method to the BC 

inversion. 
This discussion adds the structure of scaling analysis 

to the fairly standard noise reduction processes currently 

Fourier Imaging 

In seismic applications such as filtering, imaging, and mi- 
gration/inversion, one basic concept is the reconstruction 
of the data by performing forward and inverse Fourier 
transforms with proper "focusing" filters that depend on 
both domains. We are concerned with aperture-limited 
Fourier-like transforms of data /(x'). Such an output can 
be written as a cascade of forward and inverse Fourier 
transforms acting on /(x'), 

J(x) = j±- j<Tk [ dV a(x',k)eik(x-x,)/(x'),   (3) 
(2*)" JDk     JDx, 

where n is the dimension of interest; x and x' are n com- 
ponent vectors; k is the wave vector. Dxi and Dk are the 
supports of /(x') in space and wavenumber domain re- 
spectively; that is, they define the apertures. In seismic 
data processing, Dk is constrained to a "large wavenum- 
ber" domain; the nature of the Dk is essential to the re- 
construction of /(x'). In the applications to BC inversion, 
/ is related to the wavespeed perturbation of the sub- 
surface. It represents a piecewise smooth function, from 
which it follows that the domain of the integration can be 
decomposed into separate domains whose boundaries in- 
clude all of the discontinuities of /. The amplitude of the 
integrand a(x',k) is the "focusing" operator required to 
reconstruct the image from the data; it is allowed to de- 
pend on both k and x'. The appropriate filter arises from 
properties of aperture-limited large wavenumber Fourier 
transforms. To simplify the problem and focus our atten- 
tion on some insights of Fourier inversion, we start our 
discussion with a — 1 in (3). 

Bleistein et a/. (1996), have shown that the high 
wavenumber aperture-limited Fourier inversion of the 
piecewise smooth function /(x') is dominated by the val- 
ues on the discontinuity surfaces. The inversion is ap- 
proximately a band-limited step function of normal dis- 
tance from each point on the discontinuity surface. The 
amplitude of the step function is proportional to the jump 
in the function across the surface at the point in question. 

For better imaging of the discontinuity surfaces, 
the following filter in wavenumber domain is applied 
(Bleistein et at, 1996): 

ifcsgn(ü • k). (4) 

That is, the filter a(x', k) is replaced by the above multi- 
plier. Here, k = |k| is the magnitude of vector k, k is the 
unit vector and ü is a constant vector. In seismic applic- 
ations, there is usually little or no information about the 
plane, kz = 0, so ü can be chosen to be (0, ±1) in 2D or 
(0, 0, ±1) in 3D, respectively, so that sgn(u-k) = ±sgnfcz. 
The multiplication by i'fcsgn(u-k) replaces the Fourier in- 
version of /(x') by the singular function(s) of its bound- 
ary surface(s), with the amplitude proportional to the 
jump in /(x') at each point on the surface. The method 
breaks down at points where ü • n is nearly zero, with n 
being the unit normal to the reflector. In the application 
to inversion, ifcsgn(u ■ k) is replaced by iw\ v 4>\i wrtn 

c(> being traveltime. In this case, no direction ü is dis- 
tinguished; all directions are treated the same. Bleistein 
et al. (1996) have shown that this filter behaves asymp- 
totically like a normal derivative operator in the spatial 
domain, even though the normal direction is not known 
a priori. 

Multiscale Operator for Noise Suppression 

This directional derivative operator is sensitive to noise. 
It enhances noise in the data at large wavenumbers more 
than at small wavenumbers. In order to extract the im- 
portant object boundaries from the data, we need to 
find the local maxima representing the peaks of the 
singular functions while minimizing the effect of noise. 
A multiscale smoothing operation can do the trick. It 
extracts the most rapid changes in the neighborhood 
defined by the scale parameter while largely suppressing 
the noise. 

The smoothing process can be viewed as a convolu- 
tion operation, 

6(x')*/(x'). (5) 

Define ©s(x') as the multiscale transform, given by, 

e.(x') = 0(x'/S). (6) 

Here, s is the scale parameter. It is used to control the 
size of the neighborhood where the local maxima of deriv- 
atives are computed. At coarse scales - large s - a large 
neighborhood is encompassed, whereas at fine scales - 
small s - small neighborhoods contribute to the convolu- 
tion. 

In this report, we choose the smoothing operator 
0(x') to be a Gaussian, i.e., 
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Figure 1. (a) Velocity model, (b) velocity singularities, (c) velocity singularities of noisy data with signal to noise ratio of 4/3, 
and (d) image of (c) by applying the smoothing operator. 

e(x') = exp(-x'-x'/2). (7) 

The Gaussian filtering kernel function is infinitely differ- 
entiable, and has the same form in wavenumber domain. 
Thus, the operation is just the following multiplication, 

0s(k) = \Äsexp(-s2k-k/2), (8) 

in the wavenumber domain before inverting the trans- 

form. 
By combining the multiscale smoothing operator 

with the directional derivative operator in the previous 
section, we obtain the multiscale operator, 

#s(k) = iA;sgn(U-k)0,(k). (9) 

Replacing a(x', k) in (3) with (9), we propose the follow- 
ing processing formula for detection of the discontinuities 
of /(x'), while simultaneously suppressing the noise: 

7*W = TT^ /<*"* **(k) / dV Kx' V^M   JDk JDX, 

)eik.(x-x')   (10) 

Figure 1 is an example of applying this multiscale 
singularity detection procedure in two dimensions. Fig- 
ure 1-a shows a 2D earth model with constant velocity 
in layers and strong discontinuities. Rapid changes in the 
medium parameters are clearly indicated in Figure 1-b. 
Here, we have applied the normal derivative operator (4) 
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Figure 2. (a) Single trace of full-band data, (b) band-limited 
data, (c) singularities of full-band data (a), (d) singularities 
of band-limited dada (b), (e) band-limited noisy data and (f) 
image of (e). 

to the noise-free data. When noise is added to the original 
model at a signal to noise ratio of 4/3, the directional de- 
rivative operator (4) enhances the noise as is shown in 
Figure 1-c. The structural information is seemingly lost, 
however, the rapid changes can still be recovered at a 

certain scale s, using (8-10). This is shown in Figure 1-d 
where we have computed (9) with s = 32. The scaling 
behavior of the noise is such that it is largely suppressed 
when compared with Figure 1-c. This result compares 
favorably with Figure 1-b. 

There are various algorithms based on wavelet trans- 
forms that address this goal of noise suppression (Song 
& He, 1996), (Dessing et al., 1996). Basically, all the 
algorithms consist of an operator having a behavior 
roughly comparable to a (band-limited) differentiation 
and smoothing operation followed by extraction of the 
local maxima of the derivative of the data. The local max- 
ima occurs at the singular surfaces and in the direction 
perpendicular to them. The direction of the preference is 
not known a priori. Thus, the wavelet operation is often 
carried out by computation of the modulus function from 
mutually perpendicular wavelet transforms. The modu- 
lus function is essentially the magnitude of the gradi- 
ent operator. Thus, it can extract the local maximum 
changes within the region defined by the scale parameter; 
however, it fails to indicate the sign of the data changes. 
On the other hand, the multiplier (4) will produce a nor- 
mal derivative except when that normal is itself perpen- 
dicular to ü*. Because seismic reflectors are rarely ab- 
solutely vertical, we can choose ü as a unit vector in 
the vertical direction and image the normal derivative in 
a practical range of normal directions. An advantage of 
this operator is that it reveals the magnitude of the step 
jumps by its spike amplitude. The white sinusoid in Fig- 
ure 1(d) shows that it has a negative amplitude, which 
is consistent with the decrease of the wavespeed in the 
original model. 

For further illustration, we process one trace of the 
output in Figure 1. Figure 2-a shows the trace. The 
Nyquist wavenumber is 50/fcm. Figure 2-b shows the de- 
gradation of the bandlimited 2 — 16/km data when com- 
pared to the full-band data (Figure 2-a). The effect of los- 
ing low wavenumber components is the flattening of the 
data away from the discontinuities; if the data at zero fre- 
quency is zero, then the average of the inverse wavenum- 
bers must be zero. Further low wavenumber filtering 
transforms the steps into doublets. The high wavenum- 
ber filtering only affects the width of the doublets; 16/km 
causes insignificant loss of resolution. The steps are un- 
determinable although the locations of the discontinuities 
of the data are recognizable. Figure 2-c shows the singu- 
larities of the full-band noise-free data (Figure 2-a); it 
is the output of applying the same procedure as shown 

* However, by the observation in the first section, that, in ap- 
plication in our inversion technique, there is no distinguished 
direction, ü. 
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in Figure 1-b. Figure 2-d is the corresponding result for 
band-limited data 2-b. A comparison of Figure 2-c and 
2-d implies that the bandlimiting effect on the normal de- 
rivative operator (4) is only the insignificant differences 
on the widths of resolutions determined by the band- 
widths. The degradation of bandlimiting on the original 
data has been overcomed by employing the normal deriv- 
ative multiplier (4). Figure 2-e is the band-limited noisy 
data by adding noise to the band-limited data 2-b at a sig- 
nal to noise ratio of 4/3. Figure 2-f shows the result of ap- 
plying the noise filtering derivative operator proposed in 
the paper to these data. By comparing the peak locations 
here with those in Figure 2-b, we see that the discontinu- 
ities are still well recovered from the band-limited data, 
even though the low wavenumber components that con- 
tain information about the steps of the original function 
are missing. The peaks of the Gaussians clearly reveal the 
locations of the discontinuities, while their heights indic- 
ate the magnitude of the step scaled by the area under 
the filter applied to the data. The widths of the Gaussi- 
ans are a manifestation of the high pass filtering effect 
of setting s = 32; this choice of scale was determined as 
a compromise between higher values through which fur- 
ther resolution was lost and lower values for which the 
noise level was not acceptable. 

Singularity Reconstruction and Amplitude 
Preservation 

In this section, we will analyze some features of the 
multiscale Gaussian operator (9) as applied to singularity 
detection. We will show that this operator reconstructs 
the discontinuities of the function by Gaussians. The loc- 
ation of each discontinuity is indicated by the peak of the 
Gaussian, while the step height proportional to the peak 
amplitude. The amplitude remains unchanged across dif- 
ferent values of the scale s. 

We consider one specific piecewise smooth function 
of /(x') in (10): /(x) = AH(v ■ (x - x0)), where ff(x) 
is a step function having discontinuities at the set of xo; 
v denotes the normal at each point on the discontinuous 
surface; and A is a scalar. When Dxi in (10) includes all 
the discontinuities, and Dk is of infinite extent, the calcu- 
lation can be carried out in a similar way as in the corres- 
ponding aperture-limited Fourier inversion examples in 
(Bleistein et ah, 1996). Here we simply state the solution, 

Js(x)^exp{_IMx__^}. 
(ii) 

This implies that the full-band multiscale Fourier inver- 
sion characterizes the singularities by the Gaussian. The 
peak of Gaussian, when x = xo, indicates the location of 

the singularity, and its peak amplitude is just the mag- 
nitude of the step jump. It will not change with varying 
s. 

Let us now consider the effect of bandlimiting on 
these results. We assume that Dk is a region symmetric 
about k = 0, so that we can then consider symmetric 
intervals in each kj,j — 1,2, ...n. The solution can be 
rewritten as, 

[Mx-xo)j2 

2s2 Js(x)    =    A--=exp{ 
2TT 

-}• 

■V + 

exp(- 
2    2 

—-—)dKv 

-B7(S,X-X0,K„_,K„+)] , (12) 

where KV is the wavenumber in the v direction; KV_ and 
KV+ are the two end points of nv; rj(s, x — xo, «t,_ , KV+) 

is a lower order term and equals 0 at x = xo where the 
maximum of |/s(x)| occurs. 

Equation (12) indicates the effect of band-limited in- 
version compared to the full-band Fourier image. The 
difference between (11) and (12) at their peak values is a 
difference of error functions governed by the limits of in- 
tegration in KV. For appropriate choices of kv± and s, the 
bandlimited output in (12) is indistinguishable from the 
full bandwidth version in (11). Again, the above equation 
implies that the peak amplitude is the step jump scaled 
by a factor that is asymptotically constant in s, namely 
1. 

The Scale Parameter and Characterization of 
the Singular Behavior of Functions 

The behavior of the multiscale operator (9) is such that 
it characterizes the velocity singularities within the re- 
gion defined by the scale parameter while smoothing the 
region. In mathematics, singularities are generally char- 
acterized by their Lipschitz exponents. A function f(x) 
has Lipschitz exponent of v at xo if and only if there ex- 
ists a constant B such that for all i ina neighborhood 
of xo, we have 

\f(x)-f(xo)\<B\x-x0f,    v>v. (13) 

That is, v is a lower bound on the powers of differences 
in x that bound differences in the function values. The 
function, /(x), is uniformly Lipschitz v over an open in- 
terval (o, b) if and only if the constant B holds for any 
x, xo G (a, b). For example, if /(x) is a step function dis- 
continuous at xo, then its Lipschitz exponent is v = 0. 
The isolated singularity is the worst singularity inside 
a region that contains the isolated point. The uniform 
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Lipschitz regularity of a function over a certain region 
is then equal to the pointwise Lipschitz regularity at the 
isolated point. (Song & He, 1996). 

When noise is present, the observed data becomes 
/(x) + n(x), and the image Js(x) in (10) becomes Js(x); 

that is, 

J,(x) = /,(x) + JV,(x). (14) 

If n(x) is white noise, the Lipschitz exponent v of Ns (x) 
is less than zero (Song & He, 1996), (Mallat & Hwang, 
1992). That is, there exists a constant B, such that 

\N.{x)\ < Bs",    v<0. (15) 

This inequality implies that Ns (x) should decrease when 
the scale s increases. On the other hand, the peak val- 
ues of Is remains unchanged with s increasing according 
to equations (11) and (12). Hence, depending upon the 
differences between the signal singularities and the noise 
singularities, we can take the advantage of the multiscale 
operator (9) to suppress the noise in the data at a faster 
rate than the loss of resolution of the derivative at dis- 
continuities. We also remark that the scale s should stay 
bounded above for seismic data, because of the spatial 
resolution being lost for increasing scale. 

The scale parameter determines the size of the win- 
dow for optimal peak detection combined with noise sup- 
pression. In different problems, we can consider changing 
the window by simply varying the scale parameter within 
a reasonable range. In the pure discrete wavelet approach, 
scaling is usually discretized to powers of 2 to facilitate 
synthesis of the processed signal from its wavelet trans- 
form. In contrast the multiscale operator has the advant- 
age that we search s values over a continuous range to 
optimize our choice for simultaneous singal detection and 
noise suppression. In this application of scaling analysis, 
there is not need for synthesis - we will extract all in- 
formation from the transform of the original data. Hence, 
we need not restrict our scales to powers of 2. 

Applications to BC Inversion 

The multiscale smoothing operator is essentially a 
smooth low-pass filter in wavenumber domain. It facilit- 
ates the numerical identification of the discontinuity sur- 
face^) and the amplitude of the jump at each point on the 
surface(s), while suppressing the noise in a large scale. 
Thus, we can apply this procedure to Bleistein's inver- 
sion formula, 

Q(X) =      /d2^(x,C) 
JQ 

Here, a(x) is the perturbation correction to the given 
reference velocity field; the spatial weighting B(x, £) con- 
tains a determinant that characterizes the viability of in- 
verting source-receiver configurations; us is assumed to 
be the observed data from a medium characterized by 
piecewise-smooth parameter functions with discontinu- 
ity surfaces behaving as reflectors. With the band-limited 
high-frequency seismic input data, the output of equation 
(16) is a band-limited step-like function, with its discon- 
tinuity and amplitude not very well recovered. The noise 
in the observed data is propagated into Q(X) through 
the procedure. The multiscale operator can then be ap- 
plied as a posterior process. The output is a series of 
band-limited delta functions. The locations and the re- 
flection coefficients can be extracted, while the noise is 
suppressed because of the properties of this multiscale 
operator, as shown above. 

Conclusions 

We have described here a multiscale smoothing operator 
that simultaneously suppresses noise and accurately de- 
tects the location of discontinuities of a piecewise smooth 
function of the type that represents velocity models in 
seismic inversion. Analytical and numerical investiga- 
tions confirm these results and predict that the size of the 
discontinuity can be estimated from the output. These 
properties are exactly what is needed in the implement- 
ation of this operator in the BC inversion formalism, but 
now, with the added feature of noise suppression. 
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